Association between Experimental Bacterial Meningitis and Periapical Lesion

TATIANA BARICHELLO1, SORAIA NETTO2, RENAN ANTONIO CERETTA3, JAQUELINE S. GENEROSO4, LUTIANA R. SIMÕES5, PATRÍCIA ÁVILA RIBEIRO6, JOSIANE BUDNI7, JOÃO QUEVEDO8

ABSTRACT

Introduction: Mortality and morbidity from bacterial meningitis in African adults is significantly higher than those in better resourced settings. At the same time, the periodontal diseases are highly prevalent and can affect up to 90% of the population. Dental caries in Uganda was recorded in 40% and 62.5% of the children and adults, respectively. We hypothesize that pneumococcal meningitis could interfere in the development of periapical lesion. The aim of this study was to evaluate periapical lesion in Wistar rats subjected to pneumococcal meningitis.

Materials and Methods: The animals were divided into four groups: control (n = 10), control/periapical lesion, meningitis, and meningitis/periapical lesion groups. The surgical exposure of molars and the infection of the dental pulp were from the oral environment. Pulp necrosis was induced on the left mandibular first molars during adulthood. Dental pulps were exposed by drilling cavities on the central portion of the occlusal surface with a 1011 HL round bur in high speed to a depth nearly equal to the bur diameter. Animals were subjected to pneumococcal meningitis.

INTRODUCTION

Mortality from bacterial meningitis in African adults is significantly higher than those in better resourced settings. In sub-Saharan Africa, a study with 715 episodes of bacterial meningitis, the mortality rate was 45% at day 10 and 54% at day 40 [1]. At the same time, the periodontal diseases are highly prevalent and can affect up to 90% of the worldwide population [2]. Dental caries in Uganda was recorded in 40% and 62.5% of the children and adults, respectively [3]. Thus, could have an association between neuronal infection and periapical lesion. In Africa, the most common pathogens responsible for bacterial meningitis were Streptococcus pneumoniae (84%) and Neisseria meningitidis (4%) [4]. Pneumococcal meningitis infection is a life-threatening condition with high mortality and neurological sequelae [4,5]. The bacterial compounds are highly immunogenic and might facilitate an increased inflammatory response in the host [6]. These pro-inflammatory mediators are expressed by various host cells in response to bacterial infection and are effective stimulators of bone resorption [7]. Bone loss also was demonstrated in Wistar rats subjected to bilateral hippocampus lesion, which developed significantly more destruction of the periodontium than their controls [8]. Exposure of molars and infection of the dental pulp from the oral environment leads to outcome in the expansion of periapical lesions and damage of bone [7]. Cells that express bone-resorptive cytokines are present immediately after pulp exposure, which supports the hypothesis that these mediators play a key role in pulpal and periapical dental pathogenesis, including the concomitant bone destruction [9]. We hypothesize that pneumococcal meningitis might interfere in the development of periapical lesion. For this reason, the aim of the present study was to evaluate periapical lesion in Wistar rats subjected to pneumococcal meningitis.

MATERIALS AND METHODS

Infecting Organism

Streptococcus pneumoniae (serotype 3) was cultured in Todd Hewitt broth, and it was diluted in fresh medium. This culture was centrifuged for 10 min at 5,000 x g and resuspended in sterile saline at a concentration of 5x10^8 cfu/ml [10].

Animal Model of meningitis

Male Wistar rats (250-300 g body weight) from our breeding colony were used for the experiments. This experiment was approved by the Animal Care and Experimentation Committee of UNESC, Brazil, and was followed in accordance with the National Institute of Health’s Guide for the Care and Use of Laboratory Animals (NIH Publications No. 80-23) revised in 1996. The animals were anesthetized with an intraperitoneal administration of ketamine (6.6 mg/kg) and xylazine (0.3 mg/kg) [11]. Rats underwent a cisterna magna tap with a 23-gauge needle and received either 10 µl of artificial cerebro spinal fluid (CSF) as a placebo or 10 µl of the S. pneumoniae suspension. Immediately after induction, the animals received fluid replacement and were then returned to their cages [11,12]. Meningitis was documented by a quantitative culture of 5 µl of CSF obtained by puncture of the cisterna magna.

Animal model of periapical lesion

Wistar rats were anesthetized by an intraperitoneal administration of ketamine (6.6 mg/kg), xylazine (0.3 mg/kg), and acepromazine (0.16 mg/kg) [13]. The surgical exposure of molars and the infection of the dental pulp were from the oral environment, occurring reproducible results in the development of periapical lesions and the destruction of bone. Pulp necrosis was induced on the left mandibular first molars during adulthood. Dental pulps were exposed by drilling cavities on the central portion of the occlusal surface with a 1011 HL round bur in high speed (KG Sorensen, Cotia, SP, Brazil) to a depth nearly equal to the bur diameter (1 mm) [14].

Organization of the Experimental Groups

The animals were divided into four groups: control (n = 10), control/periapical lesion (n = 10), meningitis (n = 10), and meningitis/periapical lesion (n = 10). Three weeks after meningitis induction and periapical lesion the animals were subjected to behavioural task.

Keywords: Memory, Pneumococcal meningitis, Periodontal ligament
Behavioral task (Open field task)
Both locomotor and exploratory activities were assessed in an open-field apparatus to evaluate. This apparatus consists of a 40 x 60 cm open-field and with 50 cm high walls of brown plywood and a front glass wall. Black lines divide the floor of the open-field into nine rectangles. Animals were gently placed on the left rear quadrant and were left to explore the arena for 5 min. The number of crossings (number of times that the animals crossed the black lines, locomotor activity) and rearing movements (the exploration behavior observed in rats subjected to a new environment) were measured. The same researcher, who was blind to group treatment, performed all behavioral testing by manual analyses [15].

Radiographic evaluation of periapical lesion
The X-ray cylinder was fitted to form a perpendicular angle with the buccal surface of the first molar. A focal distance of 30 cm was observed. The X-ray unit operated at 7 mA at 70 kVp, with a size 2 phosphor plate [14] (Dabi Atlante, São Paulo) and exposure time of 0.2 seconds. Digital X-ray system was used to capture images scanned (Vista Scan Durr, São Paulo) at the resolution of 1000 dpi and saved in JPEG format.

STATISTICAL ANALYSIS
Data from periodontal ligament space were reported as mean ± SEM and analysed by Two-way ANOVA. Data from the habituation to an open field task were reported as mean ± SEM, and it was analysed by the paired Student’s t-test to compare training with test session and ANOVA post-hoc Tukey to compare differences in the number of crossings and rearing movements among groups. P-values <0.05 were considered statistically significant. All analyses were performed using the Statistical Package for the Social Science (SPSS) software version 20.0.

RESULTS
The measure of the periodontal ligament space three weeks after lesion was: control (0.09 ± 0.013), control/periapical lesion (0.20 ± 0.09), meningitis (0.18 ± 0.08), and meningitis/periapical lesion (0.81 ± 0.07). We demonstrated the effects of pneumococcal meningitis on periodontal ligament space. Meningitis/periapical lesion group was considered statistically different when compared with control group of periapical lesion. Other studies have documented that the hippocampal lesioned rats developed more destruction of the periodontium [8], maternal periapical lesion was associated with brain inflammation in rat pups [16], and inflammatory lesions of the tooth pulp induced changes in brainstem neurons of the rats [17]. We also verified that animals subjected to periapical lesion and animals subjected to periapical lesion concomitant with pneumococcal meningitis both had impairment of memory three weeks after lesion and meningitis induction. In previous studies, animals subjected to pneumococcal meningitis showed memory and learning deficits, anxiety-like and depressive-like behavior ten days after induction [18,19]. The host immune response, the production of cytokines and chemokines, and leukocyte migration represent the first line of defense in response to bacterial infection [20]. Increased TNF-α, IL-1β and IL-6 concentrations in the CSF were found in bacterial meningitis [21]. In addition, after pneumococcal meningitis, TNF-α, IL-1β, IL-6 and CINC-1 were produced mainly in the first 6 to 24 h in the cortex and TNF-α and CINC-1 in the hippocampus [22]. Oxidative stress also was formed at 24 h and 48 h after induction [23]. The same cytokines, TNF-α, IL-1β and IL-6 are commonly associated with oral infections involving periodontal and periapical lesion [16], periapical abscesses in pregnant rats also resulted in increased of the TNF-α, IL-1β and IL-6 in brain of the rat pups [16]. Although the hippocampus is not exposed to bacteria or infiltrating leukocytes directly, it is surrounded by an interstitial fluid, which is contiguous with the cerebral spinal fluid, permitting the secreted bacterial toxins and cytokines, chemokines to diffuse into the brain parenchyma [4]. In addition, life stress, anxiety, depression, can induce changes in regulatory mechanisms within the brain involved.
in immune regulation, and thereby alter immune responses and influence the susceptibility or resistance to inflammatory disorders [24]. We showed that depressive-like behavior ten days after pneumococcal meningitis induction was reversed by treatment with the antidepressant imipramine [19]. In addition, the olfactory bulbectomy, a model of depression in rats enhanced susceptibility to periodontitis [24], and periodontal disease, multiple dental caries, and periapical pathology were associated with cerebral abscess [25].

CONCLUSION

We believe that these findings suggest that the pneumococcal meningitis may play an important role in progression of periapical lesion.

ACKNOWLEDGMENTS

Laboratory of Experimental Microbiology (Brazil) is one of the centers of the National Institute for Translational Medicine (INCT-TM) and one of the members of the Center of the Excellence in Applied Neurosciences of Santa Catarina (NENASC). This research was supported by grants from CNPq (JQ and TB), FAPESC (JQ and TB), and UNESC (JQ and TB). JQ and TB are CNPq Research Fellows. JSG and LRS is holder of the members of the Center of Excellence in Applied Neurosciences of the National Institute for Translational Medicine (INCT-TM) and one lesion.

meningitis may play an important role in progression of periapical

REFERENCES

PARTICULARS OF CONTRIBUTORS:

1. Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil.
2. Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil.
3. Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil.
4. Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil.
5. Laboratório de Microbiologia Experimental, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil.
7. Laboratório de Neurociências, Programa de Pós-Graduação em Ciências da Saúde, Universidade do Extremo Sul Catarinense, 88806-000, Criciúma, SC, Brazil.
8. Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, 77030, Houston, TX, USA.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:

Dr. Tatiana Barichello, PhD - Laboratório de Microbiologia Experimental, PPGCS, UNASAU, Universidade do Extremo Sul Catarinense, 88806-000 Criciúma, SC, Brazil.
E-mail: tba@unesc.net

FINANCIAL OR OTHER COMPETING INTERESTS: As declared above.

Date of Submission: Jan 14, 2014
Date of Peer Review: Feb 25, 2015
Date of Acceptance: Mar 10, 2015
Date of Publishing: May 01, 2015