An Anatomical Study on the Foramen Ovale and the Foramen Spinosum

KARAN BHAGWAN KHAINAR, PRASHANT AMANRAO BHUSARI

ABSTRACT
Introduction: An anatomical study was undertaken to note the shape of the foramen ovale (FO), foramen spinosum (FS) & presence or absence of canalis innominatus. FO is present in the posterior part of the greater wing of sphenoid. FS is located posterolateral to foramen ovale.

Aims & Objective: We attempted this study to find out the variations in shape, bony growth & divisions of FO & FS in available dry human skulls.

Material & Methods: We studied 100 human skulls available in the Department of Anatomy MVPS Medical College, Nashik. This study of FO & FS was done in both male & female skulls.

Observation & Results: We found oval, round, almond, triangular shaped FO. Variations in the shape of FO showed the maximum as oval shaped followed by almond, round & slit like.

Conclusion: FO is of great surgical & diagnostic importance in procedures like percutaneous trigeminal rizotomy in trigeminal neuralgia, transfacial fine needle aspiration technique etc. Considering such clinical importance of FO & FS, this study was worthwhile as far as neurosurgeons are concerned.

INTRODUCTION
The FO is present in the posterior part of the greater wing of the sphenoid. The important structures which pass through it are the mandibular nerve, the accessory meningeal artery, the lesser superficial petrosal nerve and the emissary vein [1]. This is the one of the important foramina which are situated at the transition zone between the intracranial and the extracranial structures [2]. The FO opens into the infratemporal fossa, through its other opening on the lateral surface of the greater wing [3]. The FS is located posterolateral to the foramen ovale, which also leads to the infratemporal fossa [4] and it transmits the Middle Meningeal Artery (MMA) and the nervus spinosus. However, the FS is much smaller than the FO and it is circular. Sometimes, there is a separate foramen for the lesser petrosal nerve, which is known as the Canaliculus Innominatus of Arnold. The structures which pass through the FO and through the smaller foramina near it have been shown in [Table/Fig-1]. The lesser petrosal nerve sometimes passes through the canalis innominatus [5]. Although variations in the shape of the FO may normally be present, a careful evaluation of these foramina will facilitate the diagnosis of the lesions which are present in the middle cranial fossa and the nasopharynx. When an enlargement of the FO occurs, it is tempting to consider neurinoma of the fifth nerve [6]. This study not only has developmental anatomical importance, but it also has a profound surgical importance, as in trigeminal neuralgia and a diagnostic importance as in tumours and in various types of epilepsy, as of the fine needle aspiration technique in a perineural spread of the tumour and as of the electroencephalographic analysis in seizures. Only scattered reports are available on the variations of the FO and the FS. Hence, the authors feel that they have been studied.

AIMS AND OBJECTIVES
• To find the variations in the shape, bony growth and the divisions of the FO and the FS.
• To measure the distance between these two foramina.
• To compare these data with those which is available in the literature.

MATERIALS AND METHODS
A total of 100 dried adult human skulls (males-70, females-30) were selected for the present study. These skulls were obtained from the Department of Anatomy, MVPS Medical College, Nasik, India. The shape of the FO and the bony growth and any division of the FO were noted. The distance between the FO and the FS was also recorded with the help of a vernier caliper, a divider and a scale.

OBSERVATIONS
We found the maximum number of FOs as oval shaped; followed by almond shaped, round and slit like FOs [Table/Fig-2]. We also measured the distance between FO & FS [Table/Fig-3]. Fourteen cases (Rt-5, Lt-9) out of 200 sides (one case means one side of a skull) had shown a bony growth on the margin of the FO. Out of these, 8 cases had tubercles protruding from the margin,
Karan Bhagwan Khairnar and Prashant Amanrao Bhusari, An Anatomical Study on the Foramen Ovale and the Foramen Spinosum

www.jcdr.net


428

428

as shown in [Table/Fig-4]. Two cases had bony spurs, as shown in [Table/Fig-5]. Four cases showed bony plates protruding from the margin of the FO, as shown in [Table/Fig-6]. We found a doubled FO in three cases (M-2, F-1) out of 100 skulls, as in [Table/Fig-7].

DISCUSSION

The appearance of the various bony outgrowths of the foramen ovale like spines, spurs, tubercles, bony plates, etc indicate bony overgrowths during its developmental process, between its first appearance and the perfect ring formation. In one study which was conducted in India, forty patients of trigeminal neuralgia were treated with percutaneous trigeminal ganglion balloon compression. In all the patients except one, the needle could be introduced easily. The only exception was a patient with a variation in shape of the FO, in whom; the needle just fitted in the foramen [7]. The variations in the

as shown in [Table/Fig-4]. Two cases had bony spurs, as shown in [Table/Fig-5]. Four cases showed bony plates protruding from the margin of the FO, as shown in [Table/Fig-6]. We found a doubled FO in three cases (M-2, F-1) out of 100 skulls, as in [Table/Fig-7].

A doubled FS were present in 6 cases (M-2, F-4). In 2 cases, it was very tiny and it was absent on the Rt side in 1 case out of 100 skulls. Also, we found a confluence of the FO and the FS in 3 cases. In 8 cases, the Canaliculus Innominatus was seen.

A doubled FS were present in 6 cases (M-2, F-4). In 2 cases, it was very tiny and it was absent on the Rt side in 1 case out of 100 skulls. Also, we found a confluence of the FO and the FS in 3 cases. In 8 cases, the Canaliculus Innominatus was seen.
such variations is important for neurosurgeons, radiologists and in microsurgery in the middle cranial fossa. The FS is an easily identifiable landmark taken into account when neurosurgical procedures are planned in the different variations of these foramina and so they should be rhizotomy. The data of the present study may be helpful for knowing slit like shape signifies an over-ossification during the developmental morphological patterns to increase the understanding of the FO and diagnostic procedures. This shows the need of a study.

CONCLUSIONS

This study intended to offer specific anatomical data with morphological patterns to increase the understanding of the FO and the FS features. Some FOs show tubercles, bony plates, etc. The slit like shape signifies an over-ossification during the developmental process. The FO allows the passage of the mandibular branch of the trigeminal nerve, which is the target of the trigeminal radiofrequency rhizotomy. The data of the present study may be helpful for knowing the different variations of these foramina and so they should be taken into account when neurosurgical procedures are planned in the middle cranial fossa. The FS is an easily identifiable landmark in microsurgery in the middle cranial fossa and the knowledge on such variations is important for neurosurgeons, radiologists and anatomists because of the refined techniques which are available these days. In conclusion, this study was of clinical and anatomical significance to the medical practitioners in cases of trigeminal neuralgia and in diagnosing any aneurysm or vascular lesions of the cranial cavity. This knowledge will be useful to neurosurgeons for the identification and preservation of the neurovascular structures, when they plan approaches to the middle cranial fossa. We believe that our data on the FO will be enlightening, not only for anatomists, but also for clinicians.

REFERENCES


AUTHOR(S):
1. Dr. Karan Bhagwan Khairnar
2. Dr. Prashant Amanrao Bhusari

PARTICULARS OF CONTRIBUTORS:
1. Assistant Professor, Department of Anatomy, MVPS Dr. Vasantrao Pawar Medical College, Adgaon, Nasik 03, Maharashtra, India.
2. Associate Professor & Head, Department of Anatomy, MVPS Dr. Vasantrao Pawar Medical College, Adgaon, Nasik 03, Maharashtra, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:
Dr. Karan Bhagwan Khairnar, Assistant Professor, Department of Anatomy, MVPS Dr. Vasantrao Pawar Medical College, Adgaon, Nasik 03 Maharashtra, India.
Phone: 07507177677
E-mail: khairnarkaran@gmail.com

FINANCIAL OR OTHER COMPETING INTERESTS:
None.

Date of Submission: Jul 31, 2012
Date of Peer Review: Dec 17, 2012
Date of Acceptance: Jan 09, 2013
Date of Publishing: Mar 01, 2013