

Management of Distal Femur Fracture with Dual Plating using Anterolateral and Medial Approach: A Case Series

NISHAN YADAV¹, SABUJ BARAN SINGHA², CHETAN PRAKASH AGRAWAL³, BHARAT⁴, ABHISHEK BHARDWAJ⁵

ABSTRACT

Dual plating of distal femoral fractures is indicated in a supracondylar bone loss, trans-bi-condylar fractures, Hoffa fracture, periprosthetic femur fractures, non union after failed fixation using single plating, osteoporotic bone quality, and AO type C3 comminuted distal femur fractures. Ten patients (7 males and 3 females) came to the emergency department with a history of a roadside accident. Based on clinical history and radiographic evaluation, a diagnosis of AO type C3 distal femoral fracture was made. All were treated using dual plating via anterolateral and medial approaches. Mean operative time was 200±40 minutes. Overall, the patient outcome was favourable. The majority of patients (70%) had a good range of motion (>90°). Dual plating allows for better exposure, easy manipulation, and biomechanical stability, as well as congruous reduction of the fracture.

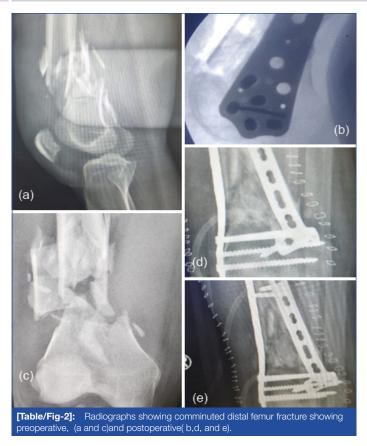
Keywords: Biomechanical stability, Comminuted, Infection, Non union, Reduction

INTRODUCTION

Distal femur fractures are one of the variants of complex trauma caused by high-energy forces, like roadside accidents and falling accidents. As per the literature, incidences of distal femur fractures are 8.7/100,000/year with a bimodal distribution [1]. Depending upon the force of trauma, distal femur fractures present as excruciating pain, swelling, along deformity of the distal thigh. Conservative management includes closed reduction and immobilisation. However, non operative treatment is rare but can be relatively advised for a frail patient, non ambulatory status, stable fracture, and a non constructible fracture [2]. Surgical management comprises retrograde femoral nailing and the lateral locking plate. With the availability of various techniques, the lateral locking plate is most commonly used and popular for the management of distal femur fractures. Dual plating is indicated for the management of complex intra-articular fractures, supracondylar fractures of the femur, non unions, and periprosthetic fractures [3,4].

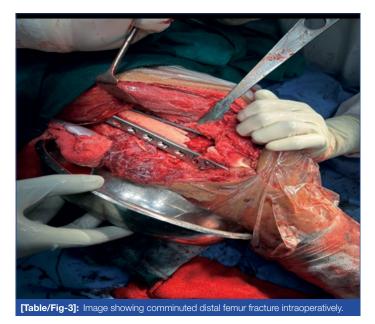
CASE SERIES

A case series of ten patients (seven males, three females) who underwent surgery for fixation of distal femur fracture (Type C3, AO classification) [5] using dual plating was enrolled as described in [Table/Fig-1]. The mean age of the patients was 40.7 ± 6.53 years. The mechanism of injury was mainly a roadside accident among eight patients, whereas two had a history of falling from a height. Diagnosis of complex articular and metaphyseal fracture of the distal femur (AO type C2/3) was made after thorough clinical examination and radiological evaluation (plain anteroposterior and lateral X-rays view) as shown in [Table/Fig-2]. An operative plan was formulated with fixation of distal femur fractures using dual plating under anaesthesia.


SURGICAL APPROACH

The patient was lying in a supine position with knee flexion of 30°. The lateral parapatellar approach was used for fixation of the lateral plate.

S. No.	Age (in years)/ Gender	Mechanism of injury/side	AO/OTA classification	Co- morbidities	Time to surgery (in days)	Type of plating used	Duration of follow-up (in months)	Functional outcome (Lysholm score)	Complications
1	30/F	RTA/ left	C3	-	Day 1	T- type DFLCP	4.5	90	-
2	42/M	RTA/right	C2	Smoker	Day2	DFLCP 3.5 LCP	6	84	-
3	45/M	FALL/right	СЗ	Smoker/ Alcoholic	Day 2	DFLCP 3.5 LCP	9	81	
4	50/M	RTA/right	C3	HTN	Day 4	T- type DFLCP	10	77	Knee stiffness
5	34/F	RTA/left	C2	-	Day1	DFLCP 3.5 LCP	6	90	-
6	41/M	RTA/left	C3	Smoker/HTN	Day 3	DFLCP 3.5 LCP	9	86	-
7	48/F	FALL/right	C2	Diabetes mellitus	Day 4	T- type DFLCP	9	77	Superficial infection, Impingement of plate
8	39/M	RTA/left	C3	-	Day 1	DFLCP 3.5 LCP	6	86	-
9	32/M	RTA/right	C3	Smoker	Day 1	DFLCP 3.5 LCP	4.5	86	-
10	46/M	RTA/left	C3	Smoker/ Alcoholic	Day 2	T- type DFLCP	12	79	Knee stiffness


[Table/Fig-1]: Demographic characteristics.

DFLCP: Distal femoral locking compression plate; RTA: Road traffic accident; HTN: Hypertension; OTA: Orthopaedic trauma association; AO: Arbeitsgemeinschaft für osteosynthesefragen

Skin incision started from Gerdy's tubercle and curved proximally over the lateral femoral condyle, extended up to the metaphyseal area. The iliotibial band was divided and followed the alignment of muscle fibers. The vastus lateralis was lifted anteriorly, and a lateral arthrotomy was done for exposure of intra-articular fractures. After the reduction of the fracture, it was fixed temporarily with a K-wire. Intra-articular fixation was done with 5 mm lag screws. After confirmation of congruous reduction under fluoroscopy, a lateral locking plate was applied.

For the fixation of the medial distal femur, a medial minimal invasive approach was used. A small incision was placed over the medial side of the medial condyle. The adductor magnus was retracted posteriorly, and the vastus medialis was retracted anteriorly. After contouring of a 3.5 mm, a Low Contact Dynamic Compression Plate (LCDCP) was applied medially as shown in [Table/Fig-3]. Avoid injury to the descending geniculate artery as well as the articular branch and muscular branch to the vastus medialis. Wound closure was done in layers, and a sterile dressing was applied. A hinge knee brace was applied.

Functional outcome was assessed with the help of the Lysholm score. Radiological and surgical outcome were also assessed, as shown in [Table/Fig-4,5].

S. No.	Pre-op displacement (mm)	Post-op displacement (mm)	Deformity valgus/varus	Type of union
1.	10-12; intra- articular step-off 5-7	<2	Neutral	Radiologically union
2.	~18; intra-articular step-off 8	<2; intra-articular step-off 1-2mm	Neutral	Radiologically union
3.	8-10; intra-articular step-off 8-10	<2	Neutral	Radiologically union
4.	10-12; intra- articular step-off 4-6	<2	Neutral	Radiologically union
5.	12-15; intra-articular step-off 10-12	<2	Neutral	Radiologically union
6.	20-25; intra- articular step-off 3-5	<2; intra-articular step-off 1-2	Neutral	Radiologically union
7.	15-18; intra-articular step-off 8-10	<2	Neutral	Delayed union
8.	10-15; intra- articular step-off 4-6	<2	Neutral	Radiologically union
9.	~15; intra-articular step-off 5-7	<2	Neutral	Radiologically union
10.	13-15; intra- articular step off 7-9	<2	Neutral	Delayed union

[Table/Fig-4]: Radiological outcome after dual plating.

S. No.	Range of Motion (ROM)	Deformity valgus/ varus	Type of union			
1.	0-120°	-	Radiologically union			
2.	0-100°	-	Radiologically union			
3.	0-90°	-	Radiologically union			
4.	0-100°	-	Radiologically union			
5.	0-110°	-	Radiologically union			
6.	0-90°	-	Radiologically union			
7.	0-90°	-	Delayed union			
8.	0-100°	-	Radiologically union			
9.	0-100°	-	Radiologically union			
10.	0-90°	-	Delayed union			
[Table/Fig-5]: Surgical outcome after dual plating.						

Postoperative Care

To allow early range of motion, quadriceps, hamstrings, and calf muscles strengthening exercises were advised. Active and passive movements of the hip and knee were started as early as day 1 postoperatively for early mobilisation and rehabilitation.

Weight Bearing

Touch-down weight bearing was started on postoperative day 1 with the help of a walker. Partial weight bearing was started after 2-3 weeks. Full weight bearing was allowed after 8 weeks.

Follow-up

Patient was planned for discharge after the third postoperative day following dressing of the surgical site. Follow-up was advised in routine Outpatient Department (OPD) after 2 weeks for radiographic evaluation and suture removal. Subsequently, visits at 1 month, 3 months and 6 months of the postoperative day were done to see the stability and healing of fracture site. One patient had superficial infection for which escalation of antibiotics and local site debridement was done. Patients having knee stiffness were motivated to undergo active physiotherapy to improve the range of motion.

DISCUSSION

Despite innovations in the field of implants and techniques, the fixation of intra-articular distal femur fractures remains challenging for the operating surgeon. Patients with marked comminution and extensive damage to articular cartilage can result in long-term disability. Fracture shortening and varus deformities of the distal articular surface are one of the common presentations. During the reduction of distal femur fractures, various problems like articular penetration, excessive penetration of the medial cortex, and anteromedial displacement with external rotation of the condylar part of the femur can occur [3].

Various approaches are available for the management of the distal femur fractures depending upon the type of fracture and the surgeon's preference. Intramedullary Nail (IMN) is a minimally invasive approach that uses indirect reduction for metaphyseal fractures. This technique is associated with fewer wound complications and decreased infection; however, anatomical reduction is not fully achieved with nails. In case of complex fractures, nailing cannot stabilise the fracture because of intraarticular extension, resulting in poor outcome, instability, and malreduction [4]. Dual plating aims at anatomical restoration of the articular surface, biomechanical stability, and prevention of varus deformity. Indications of dual plating are supracondylar bone loss, trans-bi-condylar fractures, Hoffa fracture, periprosthetic femur fractures, non union after failed fixation using single plating, osteoporotic bone quality, and AO type C3 comminuted distal femur fractures [3]. Biomechanical studies showed that dual plating results in increased stiffness and construct strength [6]. Keeping in mind the complexity of fractures, the outcomes of dual plating are very promising. Non union rates of dual plating range from 0-12.5%, lower than lateral locking plates, which are reported as 18-20% [7].

In present cases, authors used dual plating via anterolateral and medial approaches, which provides better visualisation and congruous reduction with rigid fixation. Dual plating also reduces the risk of failure of fixation. In complex fractures like extensive metaphyseal comminution, osteopenic bone, or open fractures, additional medial plating will help to provide better stability and decrease failure rates. Literature has suggested that in cases of medial bone loss more than 2 cm, medial plating along with bone grafting will provide additional stability [3,8]. In cases of high comminuted symptomatic knee, a more appropriate option can be primary arthroplasty [9].

Problems faced with dual plating are increased surgical duration, more blood loss, and periosteal stripping, which increase the duration of union. Metallic implants can also result in skin irritation and prominence at the local site. Infection rates were found to more with dual plating (0-16.7%) compared to lateral plating alone (3.6-8.5%) [10]. External fixation with internal fixation faces several problems, like septic arthritis, pin site infections, and osteomyelitis, in treating type-C femur fractures. Risk of inadequate reduction, non union, or delayed union can also be seen [11-12].

Zarin BH et al., used the anterior approach for dual plating. They suggested that the distal femur can be stabilised with dual plating using a single anterior approach, as it provides minimal medial dissection with excellent exposure [13]. Zhang ZM et al., also assessed the efficacy and feasibility of double plating, using the anterior/middle approach in managing distal femur fractures (type 3). The overall result of all patients was good [14]. Sanders R et al., showed that with single lateral plating, the achieved stabilisation was inadequate. For extra stabilisation, a medial plate with bone grafting was needed [15].

Pai Manjeswar M et al., conducted a study to assess the clinical results and functional outcome of fifty patients with distal femur fractures treated with dual plating. About 84% of patients did not

have Fixed Flexion Deformity (FFD) and walked normally by the 12th week postoperatively. 16% of cases had a residual displacement of more than 1.6 cm [16]. Similarly, in current study, despite variability in preoperative displacement, postoperative displacement was found to be less than 2 cm. Kale S et al., conducted a case series of seven patients with a 6 months follow-up to assess the outcomes of combined distal femur plating and retrograde femur nailing in comminuted femur fractures. It was shown that the range of movement improved significantly, and the fracture was united by the end of 6 months. The average Lysholm knee scoring scale was found to be good (65.17) [17]. The present study study also had similar findings, and the Lysholm knee scoring scale was 83.6, suggestive of a good functional outcome.

CONCLUSION(S)

Dual plating prevents malreduction of the fracture after meticulous placement and contouring of the lateral and medial plates. Adjunctive use also prevents varus collapse, especially in comminuted fractures and bone loss. Increased stability and strengthening result in good functional outcomes. Hence, authors concluded that functional outcomes were better with fractures managed with dual plating, probably due to superior fixation and early mobilisation.

Acknowledgement

The authors would like to extend their gratitude towards Dr. Ashish Devgen for guiding them in the research work.

REFERENCES

- Elsoe R, Ceccotti AA, Larsen P. Population-based epidemiology and incidence of distal femur fractures. Int Orthop. 2018;42(1):191-96.
- [2] Thorne TJ, Nelson CT, Lisitano LSJ, Higgins TF, Rothberg DL, Haller JM, Marchand LS. Dual Plating of Distal Femoral Fractures. JBJS Essent Surg Tech. 2024;14(2):e23.00018. Doi: 10.2106/JBJS.ST.23.00018. PMID: 38903606; PMCID: PMC11186817.
- [3] Gao K, Gao W, Huang J, Li H, Li F, Tao J, Wang Q. Retrograde nailing versus locked plating of extra-articular distal femoral fractures: Comparison of 36 cases. Med Princ Pract. 2013;22(2):161-66 Epub 2012 Oct 13. Doi: 10.1159/000342664. PMID: 23075491; PMCID: PMC5586724.
- [4] Sain A, Sharma V, Farooque K, Muthukumaran V, Pattabiraman K. Dual plating of the distal femur: Indications and surgical techniques. Cureus 2019;11(12):e6483.
- [5] White TO, Mackenzie SP, Gray AJ. McRae's Orthopaedic Trauma and Emergency Fracture Management. 3rd ed. International Elsevier; 2016.
- [6] Zhang W, Li J, Zhang H, Wang M, Li L, Zhou J, et al. Biomechanical assessment of single LISS versus double-plate osteosynthesis in the AO type 33-c2 fractures: A finite element analysis. Injury. 2018;49(12);2142-46.
- [7] Bai Z, Gao S, Hu Z, Liang A. Comparison of clinical efficacy of lateral and lateral and medial double-plating fixation of distal femoral fractures. Sci Rep. 2018;20;8(1):4863.
- [8] Bologna MG, Claudio MG, Shields KJ, Katz C, Salopek T, Westrick ER. Dual plate fixation results in improved union rates in comminuted distal femur fractures compared to single plate fixation. J Orthop. 2019;18:76-79.
- [9] Chapmen MW, Finkemeier CG. Treatment of supracondylar nonunions of the femur with plate fixation and bone graft. J Bone Joint Surg Am. 1999 Sep;81(9):1217-28.
- [10] Crist BD, Della Rocca GJ, Murtha YM. Treatment of acute distal femur fractures. Orthopedics 2008;31:681-90.
- [11] Hoffmann MF, Jones CB, Sietsema DL, Tornetta P, Koenig SJ. Clinical outcomes of locked plating of distal femoral fractures in a retrospective cohort. J Orthop Surg Res. 2013;8:43.
- [12] Arazi M, Memik R, Ogun TC, Yel M. Illizarov external fixation for severely coumminuted supracondylar and inter-condylar fractures of the distal femur. J Bone Jt Surg Br. 2001;83:663-67.
- [13] Ziran BH, Rohde RH, Wharton AR. Lateral and anterior plating of intra-articular distal femoral fractures treated via an anterior approach. Int Orthop. 2002;26:370-73.
- [14] Zhang ZM, Jiu L, Huang CX, Zhao ZF, Wang G, Qin CC. Treatment of type C3 distal fractures with double plating fixation via anterior middle approach. Zhongguo Gu Shang. 2012;25:1049-52.
- [15] Sanders R, Swiontkowski M, Rosen H, Helfet D. double plating of comminuted, unstable fractures of the distal part of the femur. J Bone Jt Surg Am. 1991;73:341-46.
- [16] Pai Manjeswar M, Kale A, Raithatha H, Shah S. Study of clinical results and functional outcome of patients with distal femur fracture treated with dual plating. Cureus. 2023;15(1):e34182.
- [17] Kale S, Singh S, Vatkar A, Jayaram R, Das S, Verma A. Outcomes of combined distal femur plating and retrograde femur nailing in comminuted distal femur fractures: Case series of seven patient with 6 months follow-up. J Orthop Case Rep. 2025;15(2):203-08.

PARTICULARS OF CONTRIBUTORS:

- Senior Resident, Department of Orthopaedics, PGIMS, Rohtak, Haryana, India. Senior Resident, Department of Orthopaedics, PGIMS, Rohtak, Haryana, India.
- 2.
- Junior Resident, Department of Orthopaedics, PGIMS, Rohtak, Haryana, India. Junior Resident, Department of Orthopaedics, PGIMS, Rohtak, Haryana, India.
- Junior Resident, Department of Orthopeadics, PGIMS, Rohtak, Haryana, India.

NAME, ADDRESS, E-MAIL ID OF THE CORRESPONDING AUTHOR:

Dr. Nishan Yadav,

Senior Resident, Department of Orthopaedics, PGIMS, Rohtak-124001, Haryana, India.

E-mail: nishanyadav1355@gmail.com

PLAGIARISM CHECKING METHODS: [Jain H et al.]

ETYMOLOGY: Author Origin

• Plagiarism X-checker: Jul 01, 2025

EMENDATIONS: 6 • Manual Googling: Aug 28, 2025 • iThenticate Software: Aug 30, 2025 (13%)

> Date of Submission: Jun 17, 2025 Date of Peer Review: Jul 04, 2025

> Date of Acceptance: Sep 02, 2025 Date of Publishing: Oct 01, 2025

AUTHOR DECLARATION:

- Financial or Other Competing Interests: None
- Was informed consent obtained from the subjects involved in the study? Yes
- For any images presented appropriate consent has been obtained from the subjects. Yes