A Natural Meliorate: Revolutionary Tissue Engineering in Endodontics

I.B. GEETAL, GIRISH GALAGALI, KULKARNI SANGEETAL, SURAN PUSHPAL, FAIZAL NOUSHINL

ABSTRACT
Platelet-Rich Fibrin (PRF) was first described by Choukroun et al., (2001). It has been referred to as a second-generation platelet concentrate, which has been shown to have several advantages over traditionally prepared platelet-rich plasma. PRF has a physiologic architecture that is very favourable to the healing process, obtained due to the slow polymerization process. The development of platelet concentrate as bioactive surgical additives that are applied locally to promote wound healing stems from the use of fibrin adhesive. Developments in the field of tissue engineering have made the generation of artificial substitutes in several areas of medicine. Various clinical applications in endodontics include Periapical surgeries, Revascularisation procedures, Regenerative pulpotomy, Perforation repair. This article aims to discuss the various applications of PRF in the field of Endodontics with few case reports.

CASE 1
PRF for revascularization of nonvital immature teeth
A 26-year-old male patient reported to Department of Conservative Dentistry and Endodontics, Rajarajeswari Dental college, Bangalore with chief complaint of discolored and fractured upper central incisors [Table/Fig-1]. Patient had given H/o Trauma 15 years back. Pulp vitality gave negative response. Since, the lesion was diffuse and the absence of cystic lining, it was diagnosed as–Chronic periapical abscess with immature apex 11,21. After informed consent was obtained, the teeth were anesthetized using 2% lidocaine with 1:100,000 epinephrine, isolated with rubber dam and access cavity prepared 11,21. The canals irrigated with 3% NaOCl and saline. After drying the canals, a triple antibiotic paste–metronidazole, ciprofloxacin and minocycline at a concentration of 20mg of each antibiotic per ml was inserted. Temporary restoration was done with zinc oxide eugenol. The patient was recalled 3 weeks later. The tooth was again anesthetized, triple antibiotic paste removed and the canals dried. Using an endodontic explorer and hand file, bleeding was induced into the canal space and allowed to clot. PRF was placed into the teeth by using a blunt instrument [Table/Fig-2].

MTA was placed over PRF. The access cavity was restored by using Glass Ionomer Cement. The patient was recalled every 3 months for review. After 1 year follow up, the size of the lesion is reduced along with the dentine thickening in the apical region [Table/Fig-3].

The combination of PRF membrane as a matrix and MTA can prove to be an effective alternative for creating artificial root-end barriers and to induce faster periapical healing in cases with large periapical lesions [2].

CASE 2
PRF as apical barrier for apexification of nonvital immature tooth
A 29-year-old male patient reported to with chief complaint of discolored and broken 21 [Table/Fig-4]. Patient gives H/o Trauma 15 years back. Pulp vitality gave negative response in relation to. Diagnosis was-Chronic periapical abscess with immature apex 21. After informed consent was obtained, the teeth were anesthetized by using Lidocaine 2% with adrenaline and isolated. Caries excavation done with round bur using slow speed hand piece. Pulpotomy was performed with a sharp spoon excavator. Coronal pulp was removed to the level of pulp chamber floor [Table/Fig-8]. Haemostasis achieved by irrigating the cavity with sterile saline and cotton pellets. The pulpal wound was covered with PRF [Table/Fig-9].

A 2 mm thick layer of MTA placed over the PRF and an interim restoration of glass–ionomer cement placed [Table/Fig-10]. At the first recall after 1 day no post-operative pain was reported. After 6 months, the tooth responded positively to pulp sensibility tests, and radiographic examination revealed a normal periodontal ligament space [Table/Fig-11,12].

The pulp cells residing in pulp clinically diagnosed with pulpitis might still have stem cell potential similar to healthy pulp cells and therefore might be a resource for autologous pulp regeneration [3].

CASE 3
Regenerative pulpotomy using PRF
A 19-year-old male patient reported with established pulpitis in 46 with carious pulp exposure and sharp, intermittent pain [Table/Fig-7]. Teeth was first anaesthetized by using Lidocaine 2% with adrenaline and isolated. Caries excavation done with round bur using slow speed hand piece. Pulpotomy was performed with a sharp spoon excavator. Coronal pulp was removed to the level of pulp chamber floor [Table/Fig-8]. Haemostasis achieved by irrigating the cavity with sterile saline and cotton pellets. The pulpal wound was covered with PRF [Table/Fig-9].

The pulp cells residing in pulp clinically diagnosed with pulpitis might still have stem cell potential similar to healthy pulp cells and therefore might be a resource for autologous pulp regeneration [3].

CASE 4
Application of PRF in periapical surgery
A 29-year-old female patient reported to with chief complaint of pain in the 31,41 [Table/Fig-13]. Radiograph revealed extruded GP into the periapex. Periapical surgery was scheduled. Rectangular flap incision given [Table/Fig-14]. Extruded GP was removed, granulation tissue curedtted. PRF was placed over the bony defect. Sutures given [Table/Fig-15].

Using autologous platelet rich fibrin matrix in the bony defects has benefits for organizing the osteoblasts, formation of neovascularization and more rapid and faster apposition of bone matrix with its mineralization process [4].

Keywords: Platelet rich fibrin, Apexification, Pulpotomy, Tissue engineering
DISCUSSION

In Greek mythology, Prometheus stole fire from Zeus and gave it to mankind. As punishment, Zeus had him chained to a rock where a great vulture tore at his liver every day. During the night, the liver grew whole again, only to have the vulture devour it again the next day [5].

Today, the regrowth of Prometheus’ liver has become a symbol to medical researchers for the possible renewal of damaged human organs through the use of human stem cells. Developments in the field of tissue engineering have made the generation of artificial substitutes in several areas of medicine.

Platelet-Rich Fibrin (PRF) was first described by Choukroun et al. It has been referred to as a second-generation platelet concentrate. PRF is a matrix of autologous fibrin, in which are embedded a large quantity of platelet and leukocyte cytokines during centrifugation [6]. The success rate of regenerative endodontics with its long term prognosis needs to be evaluated and improved before it can replace the conventional root canal treatment and restorations. In spite of
the directed efforts in dealing with various complexities associated with regenerating tissues, the field is still largely in its infancy. The concept of Revascularization was introduced by Ostby in 1961, where in pulp space requires complete disinfection of the canal, a scaffold for new tissue to grow, stem cells and growth factors [7]. PRF as a scaffolding material in an infected necrotic immature tooth for pulpal regeneration and tooth revitalization as it satisfies many criteria of an ideal physical scaffold [1]. Triple antibiotic paste was used for disinfection of the canal because this particular combination is effective in addressing the diverse flora present in the root canal. Sato et al., investigated this drug combination in vitro and found it to be very effective in the sterilization of carious lesions, necrotic pulps, infected root dentin and periapical lesions. This drug combination is also effective in killing the bacteria in the deep layers of root canal dentin [8,9].

Directly over the PRF clot the MTA was packed and condensed to obtain a tight coronal seal as it is hydrophilic and needs moisture to set, which is a favorable property when there is potential for moisture contamination in the clinical setting, and also MTA by itself provides signaling molecules for the growth of the stem cells [10]. The potential theory behind the success of the presented case could be attributed to a study conducted by Huang et al., who concluded that the PRF causes proliferation of human Dental Pulp Cells and increases the protein expression of Osteoprotegerin (OPG) and Alkaline Phosphatase (ALP) activity. Some amounts of human dental pulp cells present in the apical papilla usually remain vital even in case of a large periapical lesion [2].

Pulpotomy is a universally accepted treatment for teeth with incompletely formed roots involving pulpal exposure. In permanent teeth, it has been postulated that extirpating pulpal tissue and undertaking root canal treatment in many cases is not cost-effective as it is time-consuming and difficult for both patient and clinician. In addition, failure of a vital pulp therapy would not reduce the outcome of future root canal treatment for the tooth. The potential theory behind the success of the presented case could be attributed to a study conducted by Wang et al., that the PRF has a physiologic architecture that is favorable to the physiological healing process. It also provides a significant postoperative protection of the surgical site and seems to accelerate the integration and remodeling of the grafted biomaterial [11].

CONCLUSION

PRF has a physiologic architecture that is favourable to the healing, obtained due to the slow polymerization process. It is the responsibility of the clinician to gain a thorough understanding of this biotechnology and to use it wisely for the benefit of our patients. PRF with immense regenerative potential will definitely revolutionize the surgical dentistry in the near future. More histologic evaluations are required to assess the success rate of PRF.

REFERENCES