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INTRODUCTION
Risk prediction is used widely to model multiple predictors of an 
event or disease in epidemiology. Time to event is often considered 
as an outcome of interest in case of modelling risk. Time-to-event 
is a clinical course duration variable in which the time is calculated 
as to extend from the time-point when a subject is enrolled in 
the study or when the treatment begins to the end-point when 
the event of interest occurs [1]. The event may be adverse (death 
oroccurence of a disease), positive (conception or discharge from 
hospital) [2]. Survival data is a commonly encountered time to 
event data in which at the end of the follow up period the event 
will probably not have occurred for all study participants. [2] The 
distinguishing feature of survival data is censoring. Censoring is 
considered to be present when information on time to outcome 
event is not available. This occurs when there is loss to follow 
up or non-occurrence of the outcome event during the period of 
observation or before the end of a trial (right censoring); or patient 
had been at risk for disease for a period before entering the study 
(left censoring); or when the assessment of monitoring is done at a 
periodical frequency and time to event is known only up to a time 
interval (interval censoring) [3].

In survival data, the probability of surviving or not experiencing an 
event in a given length of time is popularly plotted in Kaplan-Meier 
Survival curve. For this analysis, it is assumed that at any time-point 
patients who are censored and patients who continue to be followed 
have same survival prospects [4]. In the Kaplan-Meier (KM) analysis, 
the KM estimate is computed by considering time in many small 
intervals and computing the probability of occurrence of an event 
at the end of each such interval and multiplying these successive 
probabilities by earlier computed probabilities [4]. Log rank test is 
a statistical hypothesis test that is used to compare two survival 
curves and to identify whether there is any difference between the 
survival times of different groups. However, it does not take into 
account other explanatory variables [5]. 
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Abstract 
Survival data is a special form of time to event data that is often encountered while modelling risk. The classical Cox proportional 
hazard model, that is popularly used to analyse survival data, cannot be used for modelling risk when the proportional hazard 
assumption is violated or when there is recurrent time to event data. In this context we conducted this narrative review to develop 
an algorithm for selection of advanced methods of analysing survival data in the above-mentioned situations. Findings were 
synthesized from literature retrieved from searches of Pubmed, Embase, and Google Scholar. Existing literature suggest that for 
non-proportionality, especially due to categorical predictors stratified Cox model may be useful. An accelerated failure time model 
is applicable in case of different follow-up time among different experimental groups and the median time to event is the outcome 
of interest instead of hazard. Extended Cox models and marginal models are used in case of multivariate ordered failure events and 
the type of model depends upon the presence of clustering and nature of ordering. In the presence of heterogeneity, a shared frailty 
model is used that is analogous to mixed models. More advanced models, including competing risk and multistate models are 
required for modelling competing risk, multiple states and multiple transitions. Joint models are used for multiple time dependent 
outcomes with different attributes. We have developed an algorithm based on the review for appropriate model selection to curb 
the challenge of modeling survival data and the algorithm is expected to help the naïve researchers in analysing survival data.

Cox’s proportional hazard model helps to solve this problem and is 
analogous to multiple regression in this respect. In Cox model, to 
address for censoring, the time that has elapsed between the start 
of observation or origin and the outcome event, is modelled as a 
function of different explanatory factors. The Cox model is a flexible 
semi-parametric proportional hazard model independent of time in 
view of the fact that there is no assumption for the form of baseline 
hazard; but the covariates enter the model linearly [6,7]. In the Cox 
model the intercept changes with time and information regarding 
length of time is taken into account. 

The model can be expressed as: 

log hi(t) = α(t) + β1xi1+ β2xi2 + … + Βkxik

where, α(t) is the unspecified baseline hazard function that can take 
any form but cannot be negative, and β1 to βk are coefficients of 
linearly entered covariates [7]. 

The Cox model is a more generalized form of the Poisson model 
used for count of events as outcomes in view of the concept that 
the later can be derived from the former if the baseline hazard (the 
risk of an individual at baseline before the emergence of explanatory 
or risk factor of interest) is constant over time. [8] Both the Poisson 
and Cox regression models assume the hazards to be proportional 
for individuals with different values of the explanatory variables. 
Thus, for the model to be used in epidemiologic studies, data must 
meet the assumptions that the hazards are proportional and that 
the effect of a given covariate is linear and does not change over 
time [5]. 

The Cox model, therefore, in its simplest form fail to explain 
data related to non-linear effects of covariates and when there 
are recurrent time-to-event outcomes. The former situation 
can happen when the hazard function takes the shape of a 
Gompertzian function (tumour size is slowest at the start and 
end of a time period and the growth curve approaches right hand 
asymptote slower than the left hand asymptote), Weibull function 
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(heart attack, in which failure rate is proportional to a power of 
time) or convex shape (lung cancer) [6,8]. 

The second important challenge in survival data analysis is handling 
ordered and/or clustered data. While the former is related to 
stochastic processes having Markov property, often encountered 
while studying relapse or recurrence of a disease or condition, 
clustering is found to be present in case when outcomes in two or 
more subjects are correlated or more than one outcome within a 
single subject are aggregated. For example, members of a family 
shares similar diet and lifestyle, and therefore survival time of the 
members of the family tends to be associated [9]. 

In the above-mentioned situations, the classical Cox proportional 
hazard model cannot be used; and either the classical Cox model 
needs to be extended further or specialized models should be 
used to describe the data. In a simulation study to investigate 
the performance of various regression models using information 
regarding the time to each recurrent event, it has been shown that 
the amount of bias encountered following application of various 
extended Cox models vary substantially and in the absence of 
known underlying pathology for recurrence, none is better than the 
Generalized Estimating Equation (GEE)-poisson model [10]. This 
finding, nevertheless, puts forth the importance of applying specific 
model for a specific situation. 

In this article, we have done a review of different techniques in
cluding extensions of the simple Cox model and other statistical 
modelling techniques using examples related to the field of public 
health, so that the problem of model misspecification can be curbed 
in the practice of reporting results to answer the question as to what 
model is appropriate for analyzing single or recurrent time to event 
data. Findings were synthesized from literatures retrieved from 
searches of Pubmed, Embase, Google Scholar, hand searches 
and authoritative texts. Keywords for search included “Survival 
Data”, “Survival Analysis”, “Cox Model”, “Proportional Hazard”, 
“Accelerated Failure Time”, “Extended Cox Models”, “Counting 
Process Models”, “Recurrent time to event data”, “Marginal Models”, 
“Cluster Survival Data”, “Ordered Survival Data”, “Multivariate 
Ordered Failure Time”, “Multistate Model”, “Competing Risk”, “Joint 
Model”, and “Copula”. 

Stratified Cox Model
When the proportional hazard assumption is not satisfied for a 
particular covariate, a simple solution is to use stratified Cox model. In 
this model data are stratified into subgroups or strata and Cox model 
is applied for each subgroup or stratum. The model is given by,

hig(t) = h0g(t) exp(β´xig), 

where, g represents the stratum [11]. 

This technique is particularly useful in the presence of categorical 
predictors, which are not of direct interest, causing non-
proportionality [11]. 

However, a limitation of this method has been described in the 
context of a typical two-treatment randomized clinical trial having 
a time-to-event endpoint, and randomization is stratified by a 
categorical prognostic factor (for example, gender) [12]. While 
in such studies it is often assumed that treatment hazard ratio is 
constant across strata, the use of stratified Cox model may be a 
risky approach because the said assumption is often subjected 
to violation. An alternative approach in such case may follow two 
stages: firstly, the un-stratified Cox regression is run within each 
stratum and stratum specific log(HR)s are obtained and then they 
are combined using either sample size or “minimum risk” stratum 
weight to obtain an overall estimate of the treatment effect [12].

Accelerated Failure Time Model
The proportional hazard model concentrates on the hazard ratio. 
In clinical trials, however, the hazard ratio depends on length of 

patient follow up; and therefore, the estimate of hazard ratio is 
questionable [13]. The difference in median time to event and finding 
out the confidence interval may be a reasonable estimate [13].  
The Accelerated Failure Time (AFT) approach models survival times 
directly [14]. Estimates of the ratio of the median time to event 
between treatments are directly available from these models [13].  
In AFT models the covariate effects are assumed to be constant 
and multiplicative over the time scale. This multiplicative effect is 
modelled by an acceleration factor, which represents the ratio of 
survival times corresponding to any fixed value of survival time 
[11]. The semi-parametric AFT model similar to semi-parametric 
proportional hazard model, like the Cox model, takes into account 
the censoring. 

The univariate form of the semi-parametric AFT model is given by,

Ti = Xi
Tβ + εi, i = 1, …, n; 

Where, Ti, Ci and Xi are the log-transformed failure time, censoring 
time and the p × 1 covariate vector for the ith subject. 

The corresponding multivariate AFT model for a random sample of 
n independent clusters with Ki margin in the ith cluster is given by,

Tik = Xik
Tβ + εik, i = 1, … , n and k = 1, … , Ki [15]. 

Extension of Cox Models
When the proportional hazard assumption for censored survival data 
is violated in the sense that covariate processes have a proportional 
effect on the intensity process of a multivariate count data rather 
than having a proportional effect on the hazard function, a counting 
process model is particularly useful [16]. The intensity is the 
instantaneous conditional failure rate at time t, which is conditional 
on the occurrence of particular count of set of events till that time. 

This model can be used for multivariate ordered failure event type 
data. In this model each study participant is considered to contribute 
to the risk set till she/he remains under observation at the time, the 
event occurs and shares the same baseline hazard function [17].

The Anderson Gill Counting Process (AG-CP) model is a regression 
analysis of the intensity of a recurrent event and takes into account 
complicated censoring patterns and time-dependent covariates 
[16]. The model is given by:

λι(t) = λ0(t)e
β’

0
Zι(t)Yι(t), I = 1, … , n,

where, β´(t) is the coefficient of time varying explanatory factor 
Zι(t). Yι(t) denotes the weight process; that is the transition from 
one state to another of a condition that follows Markov model. In 
such model the patients are considered to be in a discrete state 
of health, and the events represent the transition from one state 
to another. For example, “not admitted” to “admitted” in case 
of hospital admission process etc. λ0(t) is the baseline intensity 
of jump from one state to another of the Markov process event; 
where, intensity refers to the force of change from one state to 
another [16]. The intensity of jump depends on an unknown 
nuisance parameter that describes the jump proneness, which is 
dependent on time [18]. In simpler terms, this is dependent on time 
varying covariates. When compared with non-survival approaches, 
like poisson and negative binomial regression, the Anderson Gill 
approach is comparable to a negative binomial regression and is 
superior to poisson model which has an increased type I error 
rate [19]. When compared with the Cox model, the advantages 
of this model are: 1) ability to accommodate left censored right-
continuous data, 2) account for time-varying covariates, 3) can 
model multiple events, and 4) can model discontinuous interval 
of risks [20]. However, this model cannot be used when multiple 
events occur at a given time, e.g. in a study examining time to side 
effects of a new medication having multiple side effects. Here, at 
any given time point more than one side effect can occur. In this 
case, if a patient exhibits two side effects at a given time, one 
is not considered in the AG-CP model because it assumes the 
interval between two side effects as zero.
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Conditional models are required when a subject is assumed not 
to be at risk for a subsequent event until a current event has 
terminated  [17]. This means that considering a person at risk for 
(k+1)th event is conditional on the occurrence of kth event. These 
models is extension of the counting process model of AG-CP 
[22]. In this case either the actual time when the event occurs is 
used after stratifying event by failure order (Prentice, Williams, and 
Paterson-Conditional Probability model: PWP-CP) or time since the 
last event is considered assuming that all events start at the time 
of study entry (Prentice, Williams, and Paterson- Gap Time model: 
PWP-GT) [17]. In the PWP model, two models are considered in 
relation to the time scale: PWP- T model (this model measures from 
the entry time- total time model) and PWP- G model (the model 
resets the clock at every recurrence- the gap time model) [10]. 
Thus the fundamental difference between the counting process 
model and conditional model is that the latter uses event specific 
baseline hazard for a particular event, while the former models 
a common baseline hazard for all events. If an overall effect is of 
interest, counting process model is more suitable, while conditional 
models are more suitable for the relationship between first event 
and subsequent event. An advantage of conditional models is that 
they use sandwich robust standard error technique that can provide 
estimate even if underlying model is incorrect, particularly in case of 
time dependent covariates [21]. However, none of these methods 
can generate unbiased parameter estimates when independent 
increment assumption is violated [19]. This occurs when there are 
heteroscedasticity over time and correlation of observations within 
subjects [22]. In such situation Generalized Estimating Equation 
(GEE) can be rational alternative [22].

Marginal Models
Marginal models are typically used for clustered survival data. In 
a recurrent event survival data, for example, in case of modelling 
of recurrent heart attack in subjects with specific risk factors, 
measurement at different time point within a subject is possibly 
correlated, if we suppose that the subsequent occurrence of heart 
attacks has been accrued by the first event. In such case, the 
question is often focused on the effect of time and time varying 
covariates on response variable. GEE model is a marginal model 
that is particularly useful when there is correlated response. This 
means GEE can handle multiple observations at multiple fixed time 
point for each individual in a study. For example, GEE can be used 
to find out effect of an intervention to reduce proportion of kids 
with high systolic blood pressure in an American Heart Association 
8-week school-programme [23]. Here, three visits are conducted 
(at baseline, eight weeks follow up and one year post intervention) 
to answer the study question. The observations of blood pressure 
at the three visits are correlated for each individual. The advantage 
of GEE is that it allows for dependence within clusters  [21,24]. A 
plausible example can be to examine how the onset of Diabetes 
affects the time to blindness, in a study with the primary objective of 
ascertaining whether laser photocoagulation delays the occurrence 
of blindness. The dependence between right and left eyes can 
be addressed with a model similar to GEE with robust standard 
error estimator [25,26]. In this model the within subject correlation 
structure is addressed as nuisance parameter [21]. The GEE 
approach can be generalized for multivariate AFT modelling that 
accounts for multivariate dependence through working correlation 
structures to improve efficiency [15]. However, GEE is a population 
average model, which is a specific form of marginal model. In 
marginal models, individual heterogeneity is integrated to compute 
a marginal mean, which is considered as the population average, 
when the random sample is representative of the population, which 
is often difficult to obtain in longitudinal studies [27]. Moreover, 
using a conditional model provides the advantage of estimating 
individual effect; which is not possible from a population average 
model [27,28]. This means when longitudinal data is truncated by 

death, unconditional model f(Yi) reflects only averaging f(Yi|Si) over 
the survival function f(Si) [29]. Fully conditional models are however 
different in the sense that they stratify the longitudinal response 
trajectory by time of death [29]. However, advantage of using 
GEE is that it can establish a connection between conditional and 
population average models in case of Generalized Linear Model 
(GLM) class of outcomes. By estimating the marginal moments from 
conditional moments GEE can be solved when the random effects 
have a Gausian distribution [30]. 

For ordered failure time data or unordered failure time data 
with different type of event, another marginal model analogous 
to GEE has been proposed that is known as Wei Lin Weissfeld 
(WLW) model [31]. Such failure time data can arise when each 
study participant can potentially experience several events (e.g. 
infections after surgery) or there is some natural or artificial 
clustering (example of diabetes retinopathy study provided before)  
[31]. An excellent example of such situation can be seen in a study 
analyzing time to first incident detection of several different types 
of Human Papilloma virus (HPV), in which the Cox model does not 
address possible correlations between incident HPV infections. 
WLW model can be used in this case to investigate time to first 
incident detection of several types of HPV either in the same or 
different clinical visits, taking into account possible correlations 
between the types. An overall exposure effect can be modeled 
in this method even after accounting for different baseline hazard 
function for each HPV type [32]. The marginal Cox model for jth 
event in ith clustered can be modelled by:

λj(t;Zij) = λ0e
β’

j
Z

ij
(t), j = 1, … , J; i = 1, … , n

The WLW model estimates the coefficients using maximum partial 
likelihood and uses a robust sandwich covariance matrix estimate to 
account for the dependence in multiple failure time [31]. Sandwich 
estimator is a particularly useful technique to estimate the variance 
of maximum likelihood estimate when the underlying model is 
incorrect [33]. This form of marginal model has been proposed as 
superior to previously postulated Buckley-James method, which 
uses the usual least square adapted for censoring [34]. The Buckley 
James estimator was previously used to accommodate censored 
data in the original GEE approach [35]. 

Frailty and Shared Frailty Models
A frailty model is particularly useful to model heterogeneity among 
individuals [36]. In standard survival models it is assumed that all 
individuals are exposed to same risk and thus the models assume 
homogeneity. Models that include covariates take into account 
the observed sources of heterogeneity [37]. However, frailty model 
has the advantage of incorporating unobserved heterogeneity in 
addition to observed covariates [38]. It is a random effects model for 
time variables, where the random effect has a multiplicative effect 
on the hazard [39]. Here, the hazard function depends upon an 
unobservable random variable. Even after controlling for different 
known risk factors, subjects are exposed to different risk levels due 
to some unobserved covariates and this is modeled in frailty model 
and is known as frailty [21]. Shared frailty model is particularly useful 
for multivariate survival data [36]. 

A simple frailty model can be written as [31]:

hij(t) = h0(t)exp(βTZij(t) + νi)

where, h0(t) is the unspecified baseline hazard and β is the regression 
coefficient.

The likelihood of the observed data is calculated as a function of this 
hazard. As the distribution is unknown very often, the best way to 
find the right distribution is to fit several frailty models with different 
distributions for baseline hazard [31]. The standard assumption is to 
use a gamma distribution for the frailty. However, this condition is 
particularly useful for late events [39]. To identify heterogeneity of a 
frailty distribution hypothesis test have been proposed considering 
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h0 that yt have a common variance. In this regard, the useful of 
cusum of squares test has been proposed to detect a variance 
change and the location of change [40].

Compared to the models discussed above frailty model has much 
wider applicability, including multivariate (dependent) failure times 
generated as conditionally independent times given the frailty [39]. 
However, a major limitation of shared frailty model is that it cannot 
account for two heterogeneous but independent processes [41]. 
Such situation may arise in case of chronic diseases like cancer or 
disease relapses, where a joint analysis of recurrence and mortality 
processes are needed. In such cases a joint model with correlated 
frailty may help [41]. 

Competing Risk and Multistate Models
In simple terms, survival models are two state models in which tran
sition from one state to another is taken into account. Therefore, 
special techniques are needed when there are more than one state 
and/ or more than one transition. Such situation may arise in several 
demographic processes including migration, changes in marital 
status, in which it becomes necessary to account for the transitions 
people experience in their life course. These processes are best 
accounted by multistate models (semi-Markov model). In these 
models the basic parameters are transition hazard rates or intensities 
which depend on time spend on a particular state and observed 
covariates [42]. Several multistate modelling techniques have been 
developed. Among these some commonly used techniques are:

Competing Risks Model
In Markov process, there are some states for which it is not possible 
to transition out of the state. These are absorbing states. The 
remaining ones are transient states [43]. In survival data there are two 
states: one absorbing state (death) and one transient (alive) state. 
But for competing risks data there are multiple absorbing states 
(failure from each of several causes) [43]. Competing risk refers to 
experience by a patient an event different from the event of interest. 
For example, in order to determine the incidence of death due to 
breast cancer among breast cancer patients, death due to some 
unrelated cause may be a competing risk [44]. While the censoring, 
usually encountered in survival data is the noninformative censoring, 
in competing risk data informative censoring from competing risk 
(for example, death due to causes other than the cause of interest) 
is also present. In such case, non-parametric estimation of the 
cumulative incidence by differentiating between the informative and 
non-informative censoring will help to measure effect of interest. 
The step-by-step approach of such differentiation has been given 
by Satagopan JM et al., [44]. 

Different Multistate Models
The model assumptions for multistate models vary with respect 
to different type of time dependence of the transition rate from 
one state to another and presence of intermediate processes. 
When intensities are constant or independent of time, Time-
Homogeneous Markov Models (THMM) are used; when the 
transition intensities only depend on the history of the process 
through the current state, non-homogeneous Markov models are 
used; when future evolution not only depends on the current state 
h, but also on the entry time th into state h, semi-Markov models are 
used [45]. However, when the transition intensity depends on the 
entire path that they took to get to their current state, non-Markov 
models are used [43]. Therefore, specifying the model depends 
on assumption regarding Markov process and time-homogeneity. 
While the assumption regarding the former is checked using Cox 
Snell Residuals and Akaike’s Information Criterion, the latter is 
checked by Schoenfeld Residuals [46]. In case of chronic diseases, 
where the states represent the degree of damage, a progressive 
Markov process is observed. For example, progression in case of 
human immunodeficiency virus (HIV) infection: asymptomatic to 

symptomatic non-Acquired Immunodeficiency Syndrome (AIDS) to 
AIDS. In such case, the progressive multistate models can provide 
a convenient framework for reliable parameter estimation [47]. The 
simplest form of progressive multistate model is transformation the 
two-state survival model (alive–dead) into progressive three-state 
model by splitting the alive state into two transient states, which 
can be generalized to k-progressive model [45]. For HIV infection 
example, the possible three state model can be: asymptomatic–
symptomatic non-AIDS–AIDS. However, application of Cox model 
for each endpoint separately is not recommended because separate 
analyses fail to reveal the relationship between different types of 
events [48]. Parameter estimation using Expectation-Maximization 
(EM) algorithm and variance estimation using Luis method in case of 
progressive multistate models have been described in literature [47]. 
A simple variation of the progressive multistate model is the illness-
death model, where illness is an intermediate between disease and 
death. This is commonly found in oncological studies. For example, 
in case of cancer patients, post-tumour removal, death can occur 
in a patient with or without the presence of an intermediate event: 
isolated loco-regional recurrence [49]. In such case, more general 
models than Markov models are needed because transition hazards 
depend on previous state occupation time and presence of two 
different time scales following the occurrence of the intermediate 
event: first, the time since entry into the study and second, the time 
since the occurrence of the intermediate event. In such case, a joint 
approach has been proposed in the literature [49].

Joint Models
In health services research, outcomes with different attributes, e.g. 
continuous, count and categorical outcomes are encountered jointly; 
for example, an adverse health event (binary) can have impact on 
both length of stay in a hospital and cost [50]. In such case, copula 
models may be used to link the specified marginal distributions 
to get a joint distribution for the outcomes [50]. Copula functions 
enable separate consideration of each variable margin and their 
dependence structure [51]. In a semi parametric copula model, the 
probability structure for each failure time is determined marginally, 
and nonparametric consistent estimators are obtained for marginal 
survival functions ignoring the dependence. The estimators are 
then substituted into a conditional likelihood for the association 
parameter, which yields a pseudo-likelihood and the association 
parameter is estimated from the pseudo conditional likelihood using 
estimating equation [52]. 

DISCUSSION
Semi parametric Cox model is based on proportional hazards 
assumption, which is often violated. Based on the review of different 
methods in different situations, we put forward a crude simple 
algorithm that can serve as a preliminary guideline to prevent model 
misspecification while analysing survival data [Table/Fig-1]. We 
recommend the use of stratification in the presence of categorical 
covariates, for which proportional hazard assumption is violated. 
However, the number of such covariates should be fewer and a 
two-staged procedure, discussed above, is often preferable. In case 
of clinical trials, when follow up periods for various interventions or 
comparison groups are different, and the Hazard Ratio (HR) depends 
on follow up period, AFT models are preferred to determine the 
desired effect in term of acceleration factor. In case of multivariate 
ordered failure events, when covariates processes have proportional 
effect intensity process and local martingale assumption is satisfied, 
the Andersen Gill Counting Process model may be used. However, 
in the presence of multiple events at each time point in the above 
case, e.g. multiple side effects of a drug, Prentice Williams Paterson 
Gap Time Model is used. None of the above mentioned models can 
be applied in the presence of clustering, for which marginal models, 
like WLW model may be used. However, marginal models can only 
provide effect in terms of population average or marginal mean. 
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[Table/Fig-1]: Algorithm for model selection in survival data analysis
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However, GEE can establish a connection between conditional 
and population average models. But, these models cannot take 
into account individual heterogeneity, which can be modelled using 
shared frailty for multivariate data. While all the above-mentioned 
models are used for two state survival data, they cannot provide 
reliable parameter estimate in the presence of competing risk(s). 
In the latter case, a competing risk model may be used. If there 
are more than two states, however, a multistate model may be 
used. The choice of model in such case may be determined by 
the relationship between intensity of transition between states and 
time scale. In multivariate time to event data, event several different 
outcomes of different attributes are considered simultaneously, a 
joint model using copula function can be considered. 

Although the method of making choice provided above is crude 
and subjected to carefully checking assumption of each model 
before applying, it is expected to aid researchers, especially who 
are naïve in this field, develop a clear perspective about what model 
is suitable based on the research question, study design, censoring 
pattern and underlying dependence among different failure events.
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